Comparative performance analysis of lead-free perovskites solar cells by numerical simulation

Author:

Srivastava Shristy1,Singh Anand Kumar1,Kumar Prashant1,Pradhan Basudev12ORCID

Affiliation:

1. Department of Energy Engineering, Central University of Jharkhand, Brambe, Ranchi, Jharkhand 835205, India

2. Centre of Excellence (CoE) in Green and Efficient Energy Technology (GEET), Central University of Jharkhand, Brambe, Ranchi, Jharkhand 835205, India

Abstract

Research of lead-free perovskite solar cells (PSCs) has gained attention with an urgent intent to eliminate toxic lead in perovskite materials. The prime intention of this research is to supplement the current research progress with a comparative analysis of various lead-free PSCs through numerical simulation analysis using solar cell capacitance simulator (SCAPS)-1D software. Lead-based toxicity and instability have been one of the major hurdles in restricting perovskite solar cells from being commercialized. This study caters in substituting the need for toxic lead (Pb)-based PSCs with more efficient Pb-free PSCs. The device simulation is carried out in the n– i– p configuration of FTO/[6,6]-phenyl-C61-butyric acid methyl ester/perovskite layer/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine/Au using six distinct Pb-free perovskites. The impact of various active layers, including hole and electron transport thicknesses and the concentration of doping on solar device performances, has been minutely probed and optimized. CsSnI3 based PSC shows the best power conversion efficiency of 28.97% among all Pb-free devices. This makes very evident its probability to achieve high-performance Pb-free solar devices experimentally at par with lead-based perovskite solar cells in future research.

Funder

Science and Engineering Research Board

Ministry of Education, India

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3