Effects of electron heating and surface rippling on Rayleigh–Taylor instability in radiation pressure acceleration

Author:

Wu X. Z.12ORCID,Shou Y. R.2ORCID,Guo Z. B.1ORCID,Lu H. G.1,Liu J. X.1,Wu D.1ORCID,Gong Z.3ORCID,Yan X. Q.14

Affiliation:

1. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University 1 , Beijing 100871, China

2. Center for Relativistic Laser Science, Institute for Basic Science 2 , Gwangju 61005, Republic of Korea

3. Max-Planck-Institut für Kernphysik 3 , Saupfercheckweg 1, Heidelberg 69117, Germany

4. Collaborative Innovation Center of Extreme Optics, Shanxi University 4 , Shanxi 030006, China

Abstract

The acceleration of ultrathin targets driven by intense laser pulses induces Rayleigh–Taylor-like instability. Apart from laser and target configurations, we find that electron heating and surface rippling, effects inherent to the interaction process, have an important role in instability evolution and growth. By employing a simple analytical model and two-dimensional particle-in-cell simulations, we show that the onset of electron heating in the early stage of the acceleration suppresses the growth of small-scale modes, but it has little influence on the growth of large-scale modes, which thus become dominant. With the growth of surface ripples, a mechanism that can significantly influence the growth of these large-scale modes is found. The laser field modulation caused by surface rippling generates an oscillatory ponderomotive force, directly modulating transverse electron density at a faster growth rate than that of ions and eventually enhancing instability growth. Our results show that when surface deformation becomes obvious, electron surface oscillation at 2ω0 (where ω0 is the laser frequency) is excited simultaneously, which can be seen as a signature of this mechanism.

Funder

National Natural Science Foundation of China

Beijing Outstanding Young Scientists Program

The National Grand Instrument Project

Publisher

AIP Publishing

Subject

Electrical and Electronic Engineering,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3