Supercritical transition mechanism of immiscible ethanol/hexadecane droplets

Author:

Wang Zhanyuan1,Zhao Wanhui2,Zhou Lei1ORCID,Shu Gequn1,Wei Haiqiao1ORCID

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

2. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China

Abstract

Although the properties of supercritical fluids have been significantly focused on, few studies have focused on the transition process of multicomponent fluids from the subcritical to supercritical state. Herein, the trans-critical behavior of an immiscible binary ethanol/hexadecane (EtOH/C16) droplet under supercritical nitrogen environments is analyzed for the first time using molecular dynamics. The ambient pressure ( p) and ambient temperature ( T) of the droplets exceed the critical conditions for both EtOH and C16. Moreover, trans-critical EtOH/C16 droplets undergo a two-stage bulging-to-shrinking process. Liquid fraction λ is introduced to quantify the structural characteristics of trans-critical fluids. Fluids inside the droplet are shown to transform from the vapor to liquid phase, signified by the increase in λ with p. Three droplet evolution types are classified based on p: micro-explosion, puffing, and mixing types. The occurrence of each trans-critical droplet evolution type is determined by the competition between the subcritical gasification of EtOH and the supercritical pseudo-boiling of C16. The supercritical transition of C16 can be detected under each condition, while that of EtOH only occurs for the mixing-type droplet evolution. Furthermore, a p– T diagram is provided to analyze the combined effect of T and p on the trans-critical droplet evolution types.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities, Civil Aviation University of China

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3