Characteristics of electron evolution during initial low-pressure discharge stage upon microwave circuits

Author:

Feng Guobao1ORCID,Li Yun1ORCID,Li Xiaojun1ORCID,Zhang Heng1,Liu Lu2ORCID

Affiliation:

1. National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology, Xi’an 710100, China

2. School of Computer Science and Engineering, Xi’an University of Technology, Xi’an 710048, China

Abstract

High-power microwave-induced low-pressure discharges seriously threaten the reliability of space payload systems. Under extremely low-pressure conditions, the evolution of ionized and secondary electrons at the initial stage of discharge is crucial to figure out the discharge process. Therefore, this paper investigates the development of multiple electrons in the discharge process under a highly low-pressure environment using numerical simulation. A three-dimensional simulation model based on the Monte Carlo algorithm is established by considering various electron-gas collisions and secondary electron emissions from different material surfaces. The evolution characteristics of various electrons' populations, energy, and distribution patterns during the discharge process are analyzed. In addition, the influence of the critical conditions at different air pressures on the electron evolution during the discharge process and the intrinsic causes are also investigated. This study is significant in revealing the transition characteristics between multipactor and low-pressure discharge and exploring their inherent mechanisms.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Scientific Research Project of the Shannxi Education Department

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3