Atomistic phase transition mechanism of zero-strain electrode material: Transmission electron microscopy investigation of Li4Ti5O12 spinel lattice upon lithiation

Author:

Kitta Mitsunori1ORCID,Taguchi Noboru1ORCID,Ozaki Hiroyuki1ORCID,Kiyobayashi Tetsu1ORCID

Affiliation:

1. Department of Energy and Environment, Research Institute of Electrochemical Energy, National Institute of Advanced Industrial Science and Technology (AIST) , 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan

Abstract

The lithiation mechanism of electrode materials is important for understanding the basic reactions in Li-ion batteries. In particular, zero-strain materials have garnered interest owing to their stable charge–discharge performances. In this study, we investigated the atomistic phase transition mechanism of spinel Li4Ti5O12, a well-known zero-strain material, using high-resolution transmission electron microscopy. A single-crystalline Li4Ti5O12 (100) specimen was prepared and observed in situ at a lattice resolution under electron-beam-assisted lithiation. The lattice fringes originating from the Li plane of the spinel crystal were anisotropically altered during phase transition, suggesting the asymmetrical site shifting of Li atoms during lithiation. This spontaneous symmetry-breaking mechanism for the phase transition is considered essential for the lithiation of spinel lattice.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3