Measurements of multiple heat flux components at the divertor target by using surface eroding thermocouples (invited)

Author:

Ren J.1ORCID,Donovan D. C.1ORCID,Watkins J. G.2ORCID,Wang H. Q.3ORCID,Lasnier C.4ORCID,Looby T.5ORCID,Canik J.6,Rudakov D.7,Stangeby P. C.8,Thomas D.3,Boivin R.3

Affiliation:

1. University of Tennessee–Knoxville, Knoxville, Tennessee 37996, USA

2. Sandia National Laboratories, Livermore, California 94550, USA

3. General Atomics, San Diego, California 92121, USA

4. Lawrence Livermore National Laboratory, Livermore, California 94550, USA

5. Commonwealth Fusion Systems, Cambridge, Massachusetts 02139, USA

6. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

7. University of California San Diego, San Diego, California 92093, USA

8. University of Toronto, Toronto, Ontario M3H 5T6, Canada

Abstract

The Surface Eroding Thermocouple (SETC) is a robust diagnostic utilized in DIII-D to provide fast, edge-localized modes (ELMs) resolved heat flux measurements, in particular in geometric regions that are too shadowed for traditional infrared thermography. In order to further investigate the power dissipation in the divertor region, a combination of flush-mounted and recessed SETCs was developed to assess the effect on surface heating from non-charged particles at the divertor target. Utilizing the Divertor Materials Evaluation System sample exposure platform, the first demonstration of the feasibility of using this new method to distinguish between the heat flux from charged particles and that from neutrals and radiative heating was achieved. This paper details the process of using the combination of flush SETCs and recessed SETCs to measure the multiple heat flux components at the divertor target and further discusses how to determine two important ratios, α (ratio of heat flux from charged particles deposit on recessed SETC to that deposit on flush SETC) and β (ratio of heat flux from non-charged particles deposit on recessed SETC to that deposit on flush SETC), in the estimation of the heat flux from non-charged particle sources. Using a time dependent ratio α, it was found that ∼50% of the total incident heat flux is attributable to the non-charged particles in the fully detached open divertor in DIII-D. Finally, the new application of similar SETC diagnostics in the Small Angle Slot divertor with a V-like configuration and partial tungsten coated surface (SAS-VW) is also introduced.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3