Ultrahigh porosity photoluminescent silicon aerocrystals with greater than 50% nanocrystal ensemble quantum yields

Author:

Gelloz Bernard1ORCID,Canham Leigh2ORCID,Asaka Koji3ORCID,Nakamura Yuto4ORCID,Kishida Hideo4ORCID

Affiliation:

1. Graduate School of Science, Nagoya University 1 , Furo-cho, Chikusa, Nagoya, Aichi 464-8602, Japan

2. School of Physics and Astronomy, University of Birmingham 2 Edgbaston, Birmingham B15 2TT, United Kingdom

3. Faculty of Engineering, Fukui University of Technology 3 , 3-6-1 Gakuen, Fukui City, Fukui 910-8505, Japan

4. Graduate School of Engineering, Nagoya University 4 , Furo-cho, Chikusa, Nagoya, Aichi 464-8603, Japan

Abstract

Three types of mesoporous silicon flakes were fabricated by anodization in methanoic hydrofluoric acid from the same substrates (heavily doped p-type). Even though anodization current density, rinsing, drying method, and storage condition were the same for all three wafers, the resulting porous silicon (PSi) structures had very different properties. They had very different colors. Two of them showed quite high luminescence quantum yields (QYs), confirmed by very long luminescence lifetimes. The highest QY exceeded 50% for a peak photoluminescence wavelength of ∼750 nm. To date, this QY is the highest obtained for PSi and very importantly for silicon with large mesopores, which is typically not highly efficient (as opposed to silicon with small mesopores and microporous silicon). Large mesopores (>15 nm diameter) facilitate impregnation of various substances into luminescent material, such as metals for plasmonics and drugs for theranostics. The differing luminescent properties were correlated to electrolyte temperature during anodization, and evolution of the electrolyte batch (lowering of active fluoride content and buildup of hexafluorosilicate) used to anodize several wafers, whose effects are often overlooked when mass-producing PSi. Supercritical drying and completion of the slow growth of native oxide passivation in the dark leading to different final partially oxidized PSi structures are also important factors for the high QYs obtained. The highest QY was obtained with the structure having the most isolated Si nanocrystals in an amorphous Si oxide tissue.

Funder

Nagoya University Institute of advanced Research

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3