Ionomer structure and component transport in the cathode catalyst layer of PEM fuel cells: A molecular dynamics study

Author:

Huang Yichao1ORCID,Theodorakis Panagiotis E.2ORCID,Zeng Zhen13ORCID,Wang Tianyou13,Che Zhizhao13ORCID

Affiliation:

1. State Key Laboratory of Engines, Tianjin University 1 , Tianjin 300350, China

2. Institute of Physics, Polish Academy of Sciences 2 , Al. Lotników 32/46, 02-668 Warsaw, Poland

3. National Industry-Education Platform of Energy Storage, Tianjin University 3 , Tianjin 300350, China

Abstract

The transport of water and protons in the cathode catalyst layer (CCL) of proton exchange membrane (PEM) fuel cells is critical for cell performance, but the underlying mechanism is still unclear. Herein, the ionomer structure and the distribution/transport characteristics of water and protons in CCLs are investigated via all-atom molecular dynamics simulations. The results show that at low water contents, isolated water clusters form in ionomer pores, while proton transport is mainly via the charged sites of the ionomer side chains and the Grotthuss mechanism. Moreover, with increasing water content, water clusters are interconnected to form continuous water channels, which provide effective paths for proton transfer via the vehicular and Grotthuss mechanisms. Increasing the ionomer mass content can enhance the dense arrangement of the ionomer, which, in turn, increases the density of charge sites and improves the proton transport efficiency. When the ionomer mass content is high, the clustering effect reduces the space for water diffusion, increases the proton transport path, and finally decreases the proton transport efficiency. By providing physics insights into the proton transport mechanism, this study is helpful for the structural design and performance improvement of CCLs of PEM fuel cells.

Funder

Department of Science and Technology of Inner Mongolia Autonomous Region

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3