Temperature-dependent structural phase transition of Janus MoSH monolayer

Author:

Huang Zhijing1ORCID,Zhang Wenya1,Zeng Shuming1ORCID,Tu Yusong1ORCID,Gu Zonglin1ORCID

Affiliation:

1. College of Physical Science and Technology, Yangzhou University , Jiangsu 225009, China

Abstract

Structural phase transition materials have attracted extensive attention in various fields due to their tunable physical properties. Transition metal dichalcogenide (TMD) nanomaterial is a critical representation. However, the phase transition of Janus MoSH, a sub-member of TMD nanomaterial, remains poorly understood. In this study, we employed a theoretical approach to investigate the phase transition of MoSH monolayer. Our results reveal temperature-dependent structural phase transitions of MoSH from 2H to 1T′. As the temperature reaches a critical value, a spontaneous structural phase transition occurs from 2H to 1T′ phase. Remarkably, our study identifies the 1T′ phase of MoSH as the most stable phase (including energetic, mechanical, dynamic, and thermodynamic stability) at most temperature ranges, and we provide insight into the reaction pathway of MoSH from 2H to 1T′ phase. Moreover, the structural phase transition of MoSH with hydrogen vacancies is also temperature-dependent, with the critical temperature decreasing with the incremental number of vacancies. Overall, our findings not only reveal the temperature-dependent structural phase transition of MoSH but also confirm the stable structure of MoSH in 1T′ phase at room temperature, which is significant for potential applications of 2D MoSH nanomaterial.

Funder

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Science and Technology Support Program of Jiangsu Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3