Comparison between one- and two-way coupling approaches for estimating effective transport properties of suspended particles undergoing Brownian sieving hydrodynamic chromatography

Author:

Venditti Claudia1ORCID,Cerbelli Stefano1ORCID,Procopio Giuseppe1ORCID,Adrover Alessandra1ORCID

Affiliation:

1. Dipartimento di Ingegneria Chimica Materiali Ambiente, Sapienza Università di Roma, Via Eudossiana 18, Roma, Italy

Abstract

Simplified one-way coupling approaches are often used to model transport properties of diluted particle suspensions for predicting the performance of microcapillary hydrodynamic chromatography (MHDC). Recently, a one-way coupling approach was exploited to optimize the geometry and operating conditions of an unconventional double-channel geometry with a square cross section, where a Brownian sieving mechanism acting alongside the MHDC separation drive (BS-MHDC) is enforced to boost separation resolution. In this article, a cylindrical geometry enforcing the same BS-MHDC separation drive is thoroughly investigated by following a two-way coupling, fully three-dimensional approach, and results are compared with those obtained enforcing the one-way coupling analysis. Device geometry and operating conditions are optimized by maximizing the separation resolution. The effective velocity and dispersion coefficient of spherical, finite-sized particles of different diameters are computed, and two-phase effects are discussed in detail. Similar to the square channel device, the cylindrical double-channel geometry allows for a sizable reduction in the column length and in the analysis time (a factor above 12 for the length and a factor larger than 3 for the processing time) when compared to the standard MHDC configuration ensuring the same separation resolution. As expected, the one-way coupling approach overestimates the separation performance of both the BS-MHDC and the standard MHDC devices with respect to the two-way coupling analysis. But, surprisingly, the enhancement factor of the BS-MHDC over the standard MHDC is underestimated by the single-phase approximation as it doubles when wall/particle interactions are properly accounted for with a two-phase description.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3