Affiliation:
1. Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University , Guangzhou 510632, China
Abstract
Vacancy related defects play a crucial role in optoelectronic properties and carrier transport for photovoltaic materials, especially for its structural evolution becoming non-radiative defects induced by strain. Thus far, the evolution phenomena of vacancy defects in halide perovskite triggered by energy or strain have not been systematically investigated. Herein, we study the change in defect levels occurred in different inorganic perovskite systems and the situation caused by strain in varied strength based on density functional theory calculations. We discover that VI deep levels are easily transformed from shallow levels due to the formation of Pb–Pb dimers and octahedral distortion in all-inorganic perovskites, especially in CsPbI3. Moreover, strain can be quantitatively applied to control the suppression or enhancement of the formation of dimer in CsBI3 (B = Pb/Ge) perovskites. Eventually, our calculation results unravel that the defect physics of VI defect and the formation mechanism of non-radiative center in all inorganic perovskites, which depends on the strain strength and the accompanying octahedral distortion. The strain modulation and its quantitation effect on defect evolution of dominant vacancy map a pioneering route toward fabricating high performance inorganic photovoltaics.
Funder
National Natural Science Foundation of China
Basic and Applied Basic Research Foundation of Guangdong Province
Uniqueness and Innovation Projects foe the Universities in Guangdong Province
Guangzhou key Laboratory of Vacuum Coating Technologies and New Energy Materials
Subject
Physics and Astronomy (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献