Study on the cracking process of epoxy resin under oxygen and water atmosphere based on ReaxFF force field

Author:

Rao Xiajin123,Peng Boya1,Zhang Lei1,Li Dajian1,Zhang Wei1,Liu Peng1,Han Fangyuan1,Chen Liangyuan12,Su Yi1,Wang Le1,Pan Shaoming1,Li Rui1,Huang Wei1,Yu Min1ORCID

Affiliation:

1. Electrical Power Research Institute of Guangxi Power Grid Co. Ltd. 1 , Nanning 530023, China

2. Guangxi Key Laboratory of Intelligent Control and Maintenance of Power Equipment 2 , Nanning City, Guangxi Zhuang Autonomous Region 530000, China

3. Guangxi Power Grid Equipment Monitoring and Diagnosis Technology Innovation Center 3 , Nanning City, Guangxi Zhuang Autonomous Region 530000, China

Abstract

Amino-cured epoxy resins are widely used in the electrical and electronic industry for their excellent properties. To investigate the mechanism of the effect of O2 and H2O on the pyrolysis behavior of epoxy resin, in this paper, the cross-linked structure of bisphenol A type epoxy resin cured by adducts of diethylenetriamine and butyl glycidyl ether is modeled based on the ReaxFF force field, and the thermal decomposition processes at different temperatures and gas atmospheres were simulated and the pathways of the small molecule products were clarified. The results show that epoxy resin will produce small molecule gas products, such as H2, CO, H2O, OH, CH2O, and free radicals, in the process of pyrolysis; the presence of amino groups also generates nitrogen-containing radicals, such as CN, CH2N, and C2H4N; as the reaction temperature increases, the rate of pyrolysis reaction will be accelerated. The same temperature in oxygen and water atmospheres can accelerate the breakage of epoxy resin main chain by promoting the breakage of carbon and oxygen bonds and, at the same time, promote the generation of small molecule gases, such as H2 and CO.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3