Long-lived quantum coherent dynamics of a Λ-system driven by a thermal environment

Author:

Koyu Suyesh1,Tscherbul Timur V.1ORCID

Affiliation:

1. Department of Physics, University of Nevada, Reno, Nevada 89557, USA

Abstract

We present a theoretical study of quantum coherent dynamics of a three-level Λ-system driven by a thermal environment (such as blackbody radiation), which serves as an essential building block of photosynthetic light-harvesting models and quantum heat engines. By solving nonsecular Bloch–Redfield master equations, we obtain analytical results for the ground-state population and coherence dynamics and classify the dynamical regimes of the incoherently driven Λ-system as underdamped and overdamped depending on whether the ratio Δ/[ rf( p)] is greater or less than one, where Δ is the ground-state energy splitting, r is the incoherent pumping rate, and f( p) is a function of the transition dipole alignment parameter p. In the underdamped regime, we observe long-lived coherent dynamics that lasts for τ c ≃ 1/ r, even though the initial state of the Λ-system contains no coherences in the energy basis. In the overdamped regime for p = 1, we observe the emergence of coherent quasi-steady states with the lifetime τ c = 1.34( r/Δ2), which have a low von Neumann entropy compared to conventional thermal states. We propose an experimental scenario for observing noise-induced coherent dynamics in metastable He* atoms driven by x-polarized incoherent light. Our results suggest that thermal excitations can generate experimentally observable long-lived quantum coherent dynamics in the ground-state subspace of atomic and molecular Λ-systems in the absence of coherent driving.

Funder

National Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference59 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3