Symmetry breaking yields chimeras in two small populations of Kuramoto-type oscillators

Author:

Burylko Oleksandr1ORCID,Martens Erik A.23ORCID,Bick Christian45ORCID

Affiliation:

1. Institute of Mathematics, National Academy of Sciences of Ukraine, Tereshchenkivska Str. 3, 01024 Kyiv, Ukraine

2. Centre for Mathematical Sciences, Lund University, Sölvegatan 18, 221 00 Lund, Sweden

3. Chair for Network Dynamics, Center for Advancing Electronics Dresden (cfaed) and Institute for Theoretical Physics, TU Dresden, 01062 Dresden, Germany

4. Department of Mathematics, Vrije Universiteit Amsterdam, De Boelelaan 1111, Amsterdam, The Netherlands

5. Department of Mathematics, University of Exeter, Exeter EX4 4QF, United Kingdom

Abstract

Despite their simplicity, networks of coupled phase oscillators can give rise to intriguing collective dynamical phenomena. However, the symmetries of globally and identically coupled identical units do not allow solutions where distinct oscillators are frequency-unlocked—a necessary condition for the emergence of chimeras. Thus, forced symmetry breaking is necessary to observe chimera-type solutions. Here, we consider the bifurcations that arise when full permutational symmetry is broken for the network to consist of coupled populations. We consider the smallest possible network composed of four phase oscillators and elucidate the phase space structure, (partial) integrability for some parameter values, and how the bifurcations away from full symmetry lead to frequency-unlocked weak chimera solutions. Since such solutions wind around a torus they must arise in a global bifurcation scenario. Moreover, periodic weak chimeras undergo a period-doubling cascade leading to chaos. The resulting chaotic dynamics with distinct frequencies do not rely on amplitude variation and arise in the smallest networks that support chaos.

Funder

National Research Foundation of Ukraine

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Correlation and collective behaviour in Adler-type locally coupled oscillators at the edge of chaos;Communications in Nonlinear Science and Numerical Simulation;2024-06

2. Strong Symmetry Breaking in Coupled, Identical Lengyel–Epstein Oscillators via Folded Singularities;Journal of Nonlinear Science;2024-04-11

3. Time-reversible dynamics in a system of two coupled active rotators;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-10

4. Chimera dynamics of generalized Kuramoto–Sakaguchi oscillators in two-population networks;Journal of Physics A: Mathematical and Theoretical;2023-09-13

5. Heteroclinic cycles and chaos in a system of four identical phase oscillators with global biharmonic coupling;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3