Tunable multi-cycle terahertz pulse generation from a spintronic emitter

Author:

Ji R.12ORCID,Hibberd M. T.23ORCID,Lin C.-H.12ORCID,Walsh D. A.34ORCID,Thomson T.1ORCID,Nutter P. W.1ORCID,Graham D. M.23ORCID

Affiliation:

1. Nano Engineering and Spintronic Technologies Group, Department of Computer Science, The University of Manchester 1 , Oxford Road, Manchester M13 9PL, United Kingdom

2. Department of Physics and Astronomy & Photon Science Institute, The University of Manchester 2 , Oxford Road, Manchester M13 9PL, United Kingdom

3. The Cockcroft Institute, Sci-Tech Daresbury 3 , Keckwick Lane, Daresbury, Warrington WA4 4AD, United Kingdom

4. Accelerator Science and Technology Centre, Science and Technology Facilities Council, Sci-Tech Daresbury 4 , Keckwick Lane, Daresbury, Warrington WA4 4AD, United Kingdom

Abstract

We demonstrate that a spintronic terahertz (THz) emitter can be driven by a chirped-pulse beating scheme to generate narrowband THz pulses, with continuous tuning of the frequency and linewidth by simply adjusting the laser chirp and/or the time delay between chirped pulses. As supported by model calculations, temporal shaping of the drive laser pulses can be exploited to manipulate the ultrafast demagnetization dynamics in the thin-film emitter, modulating the spin-polarized current in the ferromagnetic layer to access multi-cycle THz emission. Using a regenerative amplifier laser system with 50 fs transform-limited pulses chirped to 6 ps, we demonstrate narrowband THz generation over a frequency range from 0.4 to 2.3 THz, in addition to linewidths down to 40 GHz using 12 ps chirped pulses. Our proof-of-concept results pave the way to future narrowband THz sources with subgigahertz linewidth and center frequencies continuously tunable from 0.1 to 30 THz. By combining with the advantageous properties of spintronic THz emitters, from straightforward implementation to flexible polarization control, these sources open up opportunities for narrowband applications over the entire THz spectral range.

Funder

Engineering and Physical Sciences Research Council

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3