Optical frequency transfer with below 10−21 uncertainty using a DFB–laser-based fiber Brillouin amplifier

Author:

Kadum Jaffar Emad1ORCID,Ji Jingxian12ORCID,Kuhl Alexander1ORCID,Misera Mattias1,Waterholter Thomas1,Koke Sebastian1ORCID

Affiliation:

1. Physikalisch-Technische Bundesanstalt 1 , Bundesallee 100, 38116 Braunschweig, Germany

2. Institut für Satellitengeodäsie und Inertialsensorik, Deutsches Zentrum für Luft- und Raumfahrt e.V. 2 , Callinstraße 36, 30167 Hannover, Germany

Abstract

Exploiting the outstanding performance of optical atomic clocks for improved timekeeping, relativistic geodesy, and fundamental physics beyond the standard model demands comparing distant state-of-the-art optical clocks. Interferometric optical fiber links have been demonstrated as an eminent method for such frequency comparisons over distances up to thousands of kilometers. However, for such distances, the optical fiber attenuation mandates signal amplification. Fiber Brillouin amplification (FBA) has been proven as an efficient amplification technique for coherent frequency transfer. Demonstrated FBA schemes have been designed based on costly narrow-linewidth pump lasers and analog pump-to-signal phase locking schemes. Furthermore, the high pump power requirement of these FBAs hinders the integration of FBA-based frequency dissemination on fiber connections for shared telecommunication signals in the C-band. In this paper, we propose and experimentally demonstrate a novel FBA module (FBAM) employing cost-effective distributed feedback (DFB) pump lasers assisted by a digital phase locking scheme based on a field programmable gated array. The new FBAM is compact, cost-effective, and directly applicable to different bands, which opens up new opportunities to establish a frequency metrology infrastructure within existing telecommunication fiber networks. Additionally, the small-footprint of the DFB-FBAM allows for frequent amplification stages with lower pump power to reach continental scale optical metrology links with an optimized signal-to-noise ratio. We characterized the DFB-FBAM’s frequency transfer uncertainty using a two-way layout over an in-lab 100 km long optical fiber link and reach a fractional frequency instability of 9.3 × 10−22 at a 10 ks integration time. The DFB-FBAM characterizations show uncertainty contributions of (−2.1 ± 3.3) × 10−22 and below for averaging times >100 ks. For the first time, we assess the temporal Brillouin frequency shift variations in an underground fiber link and implement a scheme to track these changes in a remote FBAM.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3