Potential soluble substrates for transient electronics applications: A review

Author:

Mohanty Sheetikanta1ORCID,Arya Avi1ORCID,Jena Dipun1ORCID,Guhathakurata Shrabani12ORCID,Manik Nabin Baran2ORCID,Ahmad Gufran3ORCID,Mallik Sandipan1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, NIST (Autonomous), Berhampur, Odisha 761008, India

2. Department of Physics, Condensed Matter Physics Research Centre, Jadavpur University, Kolkata 700032, India

3. Department of Electrical Engineering, Dayalbagh Educational Institute, Agra, Uttar Pradesh 282005, India

Abstract

The excessive usage and demand of consumer electronics have caused an elevation of electronic waste. Typically, consumer electronics are produced with non-biodegradable, non-biostable, and sometimes fatal materials, resulting in global alarming biological summons. Thence, to mend the drawbacks, an emerging field—named transient electronics—takes effect where the biomaterial, device, substrate, and total systems disappear untraceably after steady-state operation. Conspicuously, transient electronics have induced immense curiosity in researchers to perform interesting investigations due to the feature of disintegration after stable operation. The idea of transient electronics has been implemented in biomedical, military, and nanotechnology fields. Although rapid development is evident in transient technology in a short period, it is believed that the technology will deliver the utmost prospects in advanced electronic applications. Essentially, in transient technology, the vital challenge is to determine the platform materials that offer stability, resistance, biocompatibility, and mainly, the solubility to accommodate the transient devices. In this Review, a detailed overview of different soluble substrates, such as organic, polymer, and solid-state substrates, is described, along with the feasibility of the fabricated devices on the respective substrates to support transient electronics. Second, the dissolving mechanism of the corresponding substrates is analyzed.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3