Ferromagnetic resonance-based heat dissipation in dumbbell-like Au–Fe3O4 nanoparticles

Author:

Tonthat Loi1ORCID,Kuwahata Akihiro1ORCID,Yabukami Shin1

Affiliation:

1. Graduate School of Engineering, Tohoku University , Sendai 980-8579, Japan

Abstract

Ferromagnetic resonance (FMR) holds promise for heating magnetic nanoparticles (MNPs) in cancer therapy, especially for rapidly heating MNPs. This study aims to enhance the FMR-based heating efficiency of multifunctional hybrid gold and iron oxide nanoparticles (Au-Fe3O4 NPs) as theranostic agents. We experimentally investigate the FMR-based heating properties of newly developed dumbbell-like Au-Fe3O4 NPs, which feature ∼5 nm gold and 15 nm iron oxide components, in comparison to our previously developed Au-coated Fe3O4 NPs (Fe3O4 core ∼5.2 nm, Au shell thickness ∼0.5 nm). For comparison, we also synthesize pure Fe3O4 NPs (∼11 nm) under the same experimental conditions as the dumbbell-like Au-Fe3O4 NPs but without 5 nm Au seeds. Temperature measurements are taken at various DC fields (HDC = 0‒1600 Oe) under a radiofrequency (RF) field (fAC = 4 GHz, HAC = 1.265 Oe) for ∼13s. The results reveal a rapid temperature rise during RF field ON, followed by a decline upon RF field OFF. Remarkably, dumbbell-like Au-Fe3O4 NPs achieve a peak temperature increase of 23.4 °C, corresponding to a heating rate of 1.73 °C/s at HDC = 400 Oe, surpassing the combined values of ∼11 nm Fe3O4 NPs (11.0 °C, i.e., 0.83 °C/s at HDC = 1000 Oe) and ∼5 nm Au NPs (3.5 °C). Comparing these results to our previously developed Au-coated Fe3O4 NPs, which achieved a heating rate of 1.29 °C/s (temperature rise 16.9 °C) under HDC = 1200 Oe with an RF field at fAC = 4 GHz and a significantly higher HAC = 4 Oe (i.e. for HAC = 1.265 Oe, the estimated heating rate was 0.129 °C/s with a temperature rise of 1.69 °C), the dumbbell-shaped Au-Fe3O4 NPs demonstrate a substantially higher temperature increase by 13.4 times. These findings highlight the exceptional potential of dumbbell-shaped Au-Fe3O4 NPs for application in magnetic hyperthermia.

Funder

Japan Society for the Promotion of Science

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3