Influence of surface acoustic wave (SAW) on nanoscale in-plane magnetic tunnel junctions

Author:

Zink Brandon1ORCID,Ma Bin1,Zhang Delin1ORCID,Bhattacharya Dhritiman2ORCID,Abeed Md Ahsanul2ORCID,Bandyopadhyay Supriyo2ORCID,Atulasimha Jayasimha2ORCID,Wang Jian-Ping1ORCID

Affiliation:

1. Electrical and Computer Engineering Department, University of Minnesota 1 , Minneapolis, Minnesota 55455, USA

2. Mechanical Engineering Department, Virginia Commonwealth University 2 , Richmond, Virginia 23284, USA

Abstract

The use of voltage induced strain to switch magnetic tunnel junctions (MTJs) is a promising solution for reducing the switching energy in MRAM technologies. The MTJ is integrated with a piezoelectric layer to generate the strain. A very thin layer is needed to switch with small voltages and small energy dissipation. It is challenging to synthesize ultrathin piezoelectric layers that retain a high degree of piezoelectricity. An alternate approach is to use time-varying strain generated by a surface acoustic wave (SAW). This approach does not require a thin piezoelectric layer since the SAW is confined to the surface of the layer. In this study, we fabricated in-plane MTJs on piezoelectric LiNbO3 substrates and used IDTs to generate the SAW signal within the substrate. Our results showed that the SAW signal had a significant influence on the resistance and the tunneling magnetoresistance (TMR) ratio of the MTJs. The influence was much less significant in nanometer size MTJs than in micrometer sized ones. Most surprisingly, the SAW signal caused the tunneling magnetoresistance ratio (TMR) to drop below zero for the micrometer size MTJ, meaning that the antiparallel resistance RAP is temporarily less than the parallel resistance RP under SAW excitation. Our results provide insight into the dynamic behavior of MTJs under periodic strain and the dependence of this behavior on the device dimensions as they are scaled down to nanometer sizes.

Funder

National Science Foundation

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3