Temperature-dependent hysteresis model based on temporal convolutional network

Author:

Zhang Hao12ORCID,Yang Qingxin12,Zhang Changgeng12ORCID,Li Yongjian12ORCID,Chen Yifan12ORCID

Affiliation:

1. State Key Laboratory of EERI, School of Electrical Engineering, Hebei University of Technology 1 , Tianjin 300130, China

2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province, Hebei University of Technology 2 , Tianjin 300130, China

Abstract

The variation of temperature modifies the magnetic behavior of ferromagnetic cores which may affect the performance of electrical equipment. Therefore, it is imperative to develop a temperature-dependent hysteresis model to precisely calculate electromagnetic characteristics of electrical equipment. In this paper, a Temporal Convolutional Network (TCN) in combination with the Play operator is developed. The proposed model incorporates the temperature-dependent spontaneous magnetization intensity as the model input to introduce the temperature effect. To enhance the accuracy of model training outcomes, the Bayesian optimization approach for automatically selecting network model parameters is provided. The results show that the proposed model can accurately predict the hysteresis characteristics of materials under varying temperature and frequency conditions.

Funder

The National Natural Science Foundation of China

The National Nature Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3