Slip topology of steady flows around a critical point: Taking the linear velocity field as an example

Author:

Zou WennanORCID,He JianORCID

Abstract

The flow of viscous fluids is considered as the aggregation of the motion of fluid particles when the fluid is conceived to be made up by an infinite number of particles. As an alternative of this conventional model, fluid motion could be understood as the slip of fluid layers with a molecular scale over each other, where the slip structures of fluid and their associated small-scale motion are characterized by an axial-vector-valued differential 1-form, called the vortex field. In this paper, in the case of steady flows we define the swirling degree of the velocity field at a point, and further the swirl field of the steady flow, to study the slip topology of fluid or the local streamline pattern around the critical point. The linear velocity field in the right real Schur form is used to carry out detailed analyses around the isolated critical point. Theoretical deduction and numerical test unveil the connection between the swirling degree and the swirl field, greatly make clear the topological property of slip structures of fluid in steady flows, especially in three-dimensional space.

Publisher

AIP Publishing

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3