Temperature dependent performance of Schmidt–Boelter heat flux sensors

Author:

Miller Ruth A.1ORCID,Alpert Hannah S.2

Affiliation:

1. NASA Ames Research Center 1 , Moffett Field, California 94035, USA

2. AMA Inc. at NASA Ames Research Center 2 , Moffett Field, California 94035, USA

Abstract

The total heat flux sensors for NASA’s Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite on the Mars 2020 vehicle and the Low-Earth Orbit Flight Test of an Inflatable Decelerator (LOFTID) technology demonstration mission are passively cooled Schmidt–Boelter gauges. The output of these sensors has been experimentally demonstrated to be dependent on the temperature of the sensing element. The experimental results are shown to align with a model that assumes temperature-dependent material properties, specifically the Seebeck coefficient. The MEDLI2 and LOFTID flight total heat flux sensors did not undergo a full thermal calibration prior to being installed on the flight vehicles since the temperature dependence was unknown ahead of time. Additionally, the material properties are not known due to the designs being proprietary. For these reasons, an approximate correction factor was derived. The applicability and associated uncertainty of this temperature-dependent correction factor are presented. The error that would be introduced into the measurement if temperature effects were not accounted for would be as high as 9.5% and 16% for the MEDLI2 and LOFTID total heat flux sensors, respectively. As a best practice for future flight missions and ground-based applications that employ similar passively cooled heat flux sensors, it is recommended to individually calibrate each sensor across all applicable use temperatures to account for sensor-to-sensor variations and minimize measurement uncertainty.

Funder

Ames Research Center

Publisher

AIP Publishing

Subject

Instrumentation

Reference18 articles.

1. Mars science laboratory (MSL) entry descent, and landing instrumentation (MEDLI): Complete flight data set

2. Mars 2020 entry, descent and landing instrumentation (MEDLI2)

3. Aerothermodynamic and thermal protection system instrumentation reference guide,2016

4. Aerothermal measurements from the ExoMars schiaparelli capsule entry;J. Spacecr. Rockets,2019

5. IRVE-3 post-flight reconstruction,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3