A resonant single-wing bionic piezoelectric motor based on a biasing self-clamping mechanism

Author:

He Liangguo1ORCID,Qian An1ORCID,Dong Yuge1,Li Xinyu1ORCID,Wan Zhikai1,Yue Xukang1ORCID

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology , Hefei, Anhui 230009, China

Abstract

In this study, a resonant single-wing bionic piezoelectric motor based on a biasing self-clamping mechanism inspired by dragonfly flight was designed, assembled, and tested. The main mechanism of the designed piezoelectric motor includes a mover (including a vibrator, clamping foot, bionic pedestal, etc.), a stator, and other auxiliary components. The clamping foot of the mover contacts the side of the stator to form a biasing self-clamping mechanism, which can achieve a clamping effect within half a cycle of the vibrator’s resonant vibration. The piezoelectric plate on the vibrator receives a single harmonic excitation from the signal generator, causing the base plate to bend and distort. The base plate drives the clamping foot to move regularly, causing the mover to perform a linear motion. Moreover, repeated single harmonic excitations can realize the continuous movement of the mover. The structure of the piezoelectric motor was optimized using COMSOL6.0, which is a finite element analysis software. The first-order bending vibration of the vibrator was chosen as the working mode through finite element simulation, and an experimental platform was built. The performance of the prototype piezoelectric motor was tested and verified on the experimental platform. The final experimental data show that under the conditions of 300 Vp–p excitation voltage and 109 Hz driving frequency, the maximum no-load speed of the prototype reaches 6.184 mm/s, and the maximum load of the motor is 4 g.

Funder

The Natural Science Foundation of Anhui Province of China

The National Natural Science Fund of China

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3