The evolution of a non-autonomous chaotic system under non-periodic forcing: A climate change example

Author:

de Melo Viríssimo F.1ORCID,Stainforth D. A.1ORCID,Bröcker J.2ORCID

Affiliation:

1. Grantham Research Institute on Climate Change and the Environment, London School of Economics and Political Science 1 , London WC2A 2AE, United Kingdom

2. School of Mathematical, Physical and Computational Sciences, University of Reading 2 , Reading RG6 6AX, United Kingdom

Abstract

In this article, we approach the problem of measuring and interpreting the mid-term climate of a non-autonomous chaotic dynamical system in the context of climate modeling. To do so, we use a low-dimensional, conceptual model for the Earth system with different timescales of variability and subjected to non-periodic external forcing. We introduce the concepts of an evolution set and its distribution, which are dependent on the starting state of the system, and explore their links to different types of initial condition uncertainty and the rate of external forcing. We define the convergence time as the time that it takes for the evolution distribution of one of the dependent variables to lose memory of its initial condition. We suspect a connection between convergence times and the classical concept of mixing times, but the precise nature of this connection needs to be explored. These results have implications for the design of influential climate and Earth system model ensembles and raise a number of issues of mathematical interest.

Funder

Natural Environment Research Council

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3