Effects of friction on stress on a plate penetrating into granular media

Author:

Liu Chuan-Ping12ORCID,Wu Chuan-Yu2ORCID,Zheng Chao2,Wang Li1ORCID

Affiliation:

1. School of Energy and Environment Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom

Abstract

The penetration of a plate into granular media was analyzed, and the effects of particle–plate and particle–particle frictions, penetration direction, and initial plate orientation were examined. Results showed that stress was directly proportional to immersion depth for frictionless particles but jumped at the bed surface and then increased linearly for frictional particles. Moreover, stress was mostly independent of the penetration direction when the plate was frictionless. However, initial orientation always had an effect regardless of whether the plate was frictional or frictionless. Furthermore, a theoretical model was developed for stress analysis. This model revealed that friction on the plate essentially affected stress via changing the push angle of the particles that were in contact with the plate.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3