Giant barocaloric effects in sodium hexafluorophosphate and hexafluoroarsenate

Author:

Zhang Zhao12ORCID,Hattori Takanori3ORCID,Song Ruiqi1,Yu Dehong4ORCID,Mole Richard4ORCID,Chen Jie5ORCID,He Lunhua567,Zhang Zhidong12ORCID,Li Bing12ORCID

Affiliation:

1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences 1 , 72 Wenhua Road, Shenyang, Liaoning 110016, China

2. School of Materials Science and Engineering, University of Science and Technology of China 2 , 72 Wenhua Road, Shenyang, Liaoning 110016, China

3. J-PARC Center, Japan Atomic Energy Agency 3 , Tokai, Naka, Ibaraki 319-1195, Japan

4. Australian Nuclear Science and Technology Organisation 4 , Locked Bag 2001, Kirrawee DC, NSW 2232, Australia

5. Spallation Neutron Source Science Center 5 , Dongguan 523803, China

6. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences 6 , Beijing 100190, China

7. Songshan Lake Materials Laboratory 7 , Dongguan 523808, China

Abstract

Solid-state refrigeration using barocaloric materials is environmentally friendly and highly efficient, making it a subject of global interest over the past decade. Here, we report giant barocaloric effects in sodium hexafluorophosphate (NaPF6) and sodium hexafluoroarsenate (NaAsF6) that both undergo a cubic-to-rhombohedral phase transition near room temperature. We have determined that the low-temperature phase structure of NaPF6 is a rhombohedral structure with space group R3¯ by neutron powder diffraction. There are three Raman active vibration modes in NaPF6 and NaAsF6, i.e., F2g, Eg, and A1g. The phase transition temperature varies with pressure at a rate of dTt/dP = 250 and 310 K GPa−1 for NaPF6 and NaAsF6. The pressure-induced entropy changes of NaPF6 and NaAsF6 are determined to be around 45.2 and 35.6 J kg−1 K−1, respectively. The saturation driving pressure is about 40 MPa. The pressure-dependent neutron powder diffraction suggests that the barocaloric effects are related to the pressure-induced cubic-to-rhombohedral phase transitions.

Funder

Key Research Program of Frontier Science, Chinese Academy of Sciences

International Partner Program of Chinese Academy of Sciences

IMR Innovation Fund

CSNS Consortium on High-performance Materials of Chinese Academy of Sciences

Young Innovation Talent Program of Shenyang

National Natural Science foundation of China

Ministry of Science and Technology of China

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3