Magnetized plasma pressure filaments: Analysis of chaotic and intermittent transport events driven by drift-Alfvén modes

Author:

Karbashewski S.1ORCID,Sydora R. D.2ORCID,Van Compernolle B.3ORCID,Simala-Grant T.2ORCID,Poulos M. J.3ORCID

Affiliation:

1. Space Sciences Laboratory, University of California, Berkeley, California 94720, USA

2. Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada

3. Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA

Abstract

The origin of intermittent fluctuations in an experiment involving several interacting electron plasma pressure filaments in close proximity, embedded in a large linear magnetized plasma device, is investigated. The probability density functions of the fluctuations on the inner and outer gradient of the filament bundle are non-Gaussian and the time series contain uncorrelated Lorentzian pulses that give the frequency power spectral densities an exponential shape. A cross-conditionally averaged spatial reconstruction of a temporal event reveals that the intermittent character is caused by radially and azimuthally propagating turbulent structures with transverse spatial scales on the order of the electron skin depth. These eruption events originate from interacting pressure gradient-driven drift-Alfvén instabilities on the outer gradient and edge of the filament bundle. The temporal Lorentzian shape of the intermittent structures and exponential spectra are suggestive of deterministic chaos in the underlying dynamics; this conclusion is supported by the complexity–entropy analysis (CH-plane) that shows the experimental time series are located in the chaotic regime.

Funder

National Aeronautics and Space Administration

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3