Affiliation:
1. Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
Abstract
Collective nuclear spin excitations, called nuclear spin waves or magnons, are enabled in strongly magnetic materials by the hyperfine coupling of the nuclear and electronic spins in an atom and the exchange interaction between electronic spins of neighboring atoms. Nuclear spin waves attracted the interest of theoretical and experimental researchers worldwide about four to five decades ago and then waned. Very recently, two experimental reports of nuclear spintronic effects in the canted antiferromagnet MnCO3 have shown that spin currents can be generated using nuclear spin states, bridging two quite separate worlds, one of nuclear spin excitations and the other of spintronics. In this Tutorial, we briefly review the basic concepts and properties of nuclear spin waves in ferro- and antiferromagnetic (AF) materials and present a few significant experimental results obtained some time ago with the uniaxial anisotropy AF MnF2 and the cubic anisotropy AF RbMnF3 and compare them with theory. We also briefly present the recent experimental observations of the nuclear spin pumping effect and the nuclear spin Seebeck effect in the canted antiferromagnet MnCO3. Other possible AF candidates for studies of nuclear spintronic effects are discussed.
Funder
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Financiadora de Estudos e Projetos
Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献