Electro-optics of blue phase liquid crystal in field-perpendicular direction

Author:

Zhang Yuxian1ORCID,Yoshida Hiroyuki2ORCID,Wang Qiong-Hua1ORCID,Ozaki Masanori2ORCID

Affiliation:

1. School of Instrumentation and Optoelectronic Engineering, Beihang University 1 , Beijing 100191, China

2. Division of Electrical, Electronic, and Infocommunications Engineering, Graduate School of Engineering, Osaka University 2 , 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

Abstract

The electro-optic effect is the working principle of blue phase (BP) liquid crystals, and it describes the relationship between the field-induced birefringence of BPs and the field strength. Due to the electrostriction of BP crystals under the electric field, an orthorhombic or tetragonal crystal is usually obtained when the field is applied along one of the twofold axes of a BP crystal, leading to the optical biaxiality under electric field. Such field-induced optical biaxiality of BPs has been predicted and observed, but its dependence on the field strength has not been investigated. In this research, we analyze the electro-optics in the field-perpendicular direction by measuring the birefringence in highly ordered BP I(110) crystals perpendicular to the electric field. Results reveal that BP I crystals in the field-perpendicular direction show an electro-optic coefficient of the order of 10−10 m/V2 that may result from the large lattice deformation of BP crystals perpendicular to the electric field. Our research provides important experimental evidence for the tensorial properties of BP Kerr effect and may have important implications on the engineering of BP electro-optical devices in practical applications.

Funder

National Natural Science Foundation of China

Shenzhen Technology Development Program

National Science Centre, Poland under the OPUS call in the Weave program

Czech Science Foundation

JSPS KAKENHI

MEXT Leading Initiative for Excellent Young Researchers

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3