Quantitative magnetization measurements of magnetic particles with FePt standard samples

Author:

Luo Rui1ORCID,Wang Qian1ORCID,Lu Yu1,Xu Feng2ORCID,Guo Zhe34,Xue Fei2ORCID,You Long3ORCID,Liu Jinquan1ORCID,Luo Pengshun1ORCID

Affiliation:

1. MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology 1 , Wuhan 430074, China

2. School of Physics, Hefei University of Technology 2 , Hefei, Anhui 230601, China

3. School of Integrated Circuits, Huazhong University of Science and Technology 3 , Wuhan 430074, China

4. School of Microelectronics, Hubei University 4 , Wuhan 430062, China

Abstract

Micrometer-sized magnetic particles have been widely used in magnetic force microscopy, magnetic resonance force microscopy, and bio-sensing. To quantitatively interpret the data obtained with magnetic particles, it is important to know the magnetic properties of the particles. However, the magnetic moment of individual particle is usually too small to be measured by common instruments for samples with large volume. Here, we present a method to characterize magnetic microspheres using patterned FePt thin films as standard samples. The FePt thin film in the L10 phase has perpendicular magnetic anisotropy, and the patterned features can be magnetized to near single-domain magnets, which make them suitable standards for magnetic sphere calibration with magnetic force microscopy. Multiple linear regression is used to analyze the frequency shift images and obtain the effective dipole moment of the spheres. The position of the dipole moment is obtained by minimizing the residuals in multiple linear regression with a gradient descent algorithm. Three NdFeB spheres of different diameters were measured. It was found that the magnetization increases with the increase in the diameter of the sphere, possibly due to the weakening of ferromagnetism on the surface.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3