Self-consistent charge transport model with ionization for the alphie plasma thruster

Author:

Gonzalez J.1ORCID,Conde L.2ORCID,Donoso J. M.2ORCID

Affiliation:

1. Advanced Research Center for Nanolithography 1 , Science Park 106, 1098 XG Amsterdam, The Netherlands

2. Department of Applied Physics, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid 2 , 28040 Madrid, Spain

Abstract

The Alternative Low-Power Hybrid Ion Engine (alphie) is a new technology for space propulsion based on plasma. Its distinct characteristic is the counterflow of charges (ions and electrons) passing through its two-grid system. This means that electrons coming from an external cathode are accelerated toward the ionization chamber, in which a neutral gas (typically Ar) is injected. The strong magnetic field therein confines these electrons, which ionize and exchange energy with the propellant gas. Thus, the operation of alphie is strongly affected by the electrons coming from the external cathode and their collisions with the neutral atoms. This work studies the counterflow employing a particle-in-cell simulation of ions and electrons passing through a single hole as a function of the electron cathode currents (Ice) and potential drops between grids (VAC). Transparency of the grid system to ions and electrons and the ion current extracted by the grid system are studied under sweeps of these two parameters. The number of ionization events by each high-energy electron entering the ionization chamber is evaluated using a physical model based on the gas density and the cross section for ionization. These new ions are then extracted by the same electric field that accelerates the electrons inward. Thus, simulations are self-consistent, since the ionizing electron flow from the external cathode drives the ion outflow at the exit section of the two-grid system. The electrical transparency of the two-grid system to ions and electrons, related to the axial charge currents, is also studied under sweeps of aforementioned operation parameters. This new way to deal with ionizations can be useful to study other plasma thrusters in which electrons for ionization come from an external cathode without modeling the complex structure of the ionization chamber.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stiffness-Tunable Functional Liquid Metal Sponge;2024 IEEE International Conference on Real-time Computing and Robotics (RCAR);2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3