Equilibrium structures of selenium compounds: The torsionally flexible molecule of selenophenol

Author:

Li Wenqin1ORCID,Saragi Rizalina Tama1ORCID,Juanes Marcos1ORCID,Demaison Jean2ORCID,Vogt Natalja2ORCID,Fernández-Ramos Antonio34ORCID,Lesarri Alberto1ORCID

Affiliation:

1. Departamento de Química Física y Química Inorgánica, Facultad de Ciencias—I.U. CINQUIMA, Universidad de Valladolid 1 , Paseo de Belén, 7, 47011 Valladolid, Spain

2. Faculty of Sciences, University of Ulm 2 , 89069 Ulm, Germany

3. Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Campus Vida, Universidade de Santiago de Compostela 3 , C/ Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain

4. Departamento de Química Física, Facultade de Química, Campus Vida, Universidade de Santiago de Compostela 4 , Avda. das Ciencias s/n, 15782 Santiago de Compostela, Spain

Abstract

The equilibrium structure of selenophenol has been investigated using rotational spectroscopy and high-level quantum mechanical calculations, offering electronic and structural insight into the scarcely studied selenium compounds. The jet-cooled broadband microwave spectrum was measured in the 2–8 GHz cm-wave region using broadband (chirped-pulse) fast-passage techniques. Additional measurements up to 18 GHz used narrow-band impulse excitation. Spectral signatures were obtained for six isotopic species of selenium (80Se, 78Se, 76Se, 82Se, 77Se, and 74Se), together with different monosubstituted 13C species. The (unsplit) rotational transitions associated with the non-inverting μa-dipole selection rules could be partially reproduced with a semirigid rotor model. However, the internal rotation barrier of the selenol group splits the vibrational ground state into two subtorsional levels, doubling the dipole-inverting μb transitions. The simulation of the double-minimum internal rotation gives a very low barrier height (B3PW91: 42 cm−1), much smaller than for thiophenol (277 cm−1). A monodimensional Hamiltonian then predicts a huge vibrational separation of 72.2 GHz, justifying the non-observation of μb transitions in our frequency range. The experimental rotational parameters were compared with different MP2 and density functional theory calculations. The equilibrium structure was determined using several high-level ab initio calculations. A final Born–Oppenheimer (reBO) structure was obtained at the coupled-cluster CCSD(T)_ae/cc-wCVTZ level of theory, including small corrections for the wCVTZ → wCVQZ basis set enlargement calculated at the MP2 level. The mass-dependent method with predicates was used to produce an alternative rm(2) structure. The comparison between the two methods confirms the high accuracy of the reBO structure and offers information on other chalcogen-containing molecules.

Funder

Dr. Barbara Mez-Starck-Stiftung

Ministerio de Ciencia e Innovación

Consejería de Educación, Junta de Castilla y León

Centro de supercomputacion de Galicia

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3