Affiliation:
1. von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, 1640 Rhode-Saint-Genèse, Belgium
Abstract
We analyze and compare various empirical models of wall pressure spectra beneath turbulent boundary layers and propose an alternative machine learning approach using Artificial Neural Networks (ANNs). The analysis and the training of the ANN are performed on data from experiments and high-fidelity simulations by various authors, covering a wide range of flow conditions. We present a methodology to extract all the turbulent boundary layer parameters required by these models, also considering flows experiencing strong adverse pressure gradients. Moreover, the database is explored to unveil important dependencies within the boundary layer parameters and to propose a possible set of features from which the ANN should predict the wall pressure spectra. The results show that the ANN outperforms traditional models in adverse pressure gradients, and its predictive capabilities generalize better over the range of investigated conditions. The analysis is completed with a deep ensemble approach for quantifying the uncertainties in the model prediction and integrated gradient analysis of the model sensitivity to its inputs. Uncertainties and sensitivities allow for identifying the regions where new training data would be most beneficial to the model's accuracy, thus opening the path toward a self-calibrating modeling approach.
Subject
Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献