Artificial neural networks modeling of wall pressure spectra beneath turbulent boundary layers

Author:

Dominique J.1ORCID,Van den Berghe J.1ORCID,Schram C.1ORCID,Mendez M. A.1ORCID

Affiliation:

1. von Karman Institute for Fluid Dynamics, Chaussée de Waterloo 72, 1640 Rhode-Saint-Genèse, Belgium

Abstract

We analyze and compare various empirical models of wall pressure spectra beneath turbulent boundary layers and propose an alternative machine learning approach using Artificial Neural Networks (ANNs). The analysis and the training of the ANN are performed on data from experiments and high-fidelity simulations by various authors, covering a wide range of flow conditions. We present a methodology to extract all the turbulent boundary layer parameters required by these models, also considering flows experiencing strong adverse pressure gradients. Moreover, the database is explored to unveil important dependencies within the boundary layer parameters and to propose a possible set of features from which the ANN should predict the wall pressure spectra. The results show that the ANN outperforms traditional models in adverse pressure gradients, and its predictive capabilities generalize better over the range of investigated conditions. The analysis is completed with a deep ensemble approach for quantifying the uncertainties in the model prediction and integrated gradient analysis of the model sensitivity to its inputs. Uncertainties and sensitivities allow for identifying the regions where new training data would be most beneficial to the model's accuracy, thus opening the path toward a self-calibrating modeling approach.

Funder

Valeo

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3