Charge interaction behaviors at interfacial domains in DC GIL insulators

Author:

Pang Xi1ORCID,Xie Zongliang12ORCID,Xie Gengsheng1ORCID,Liu Peng1ORCID,Wang Qingyu1ORCID,Peng Zongren1ORCID,Li He2ORCID

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University 1 , Xi'an 710049, China

2. The Molecular Foundry, Lawrence Berkeley National Laboratory 2 , Berkeley, California 94720, USA

Abstract

Long-term operation of high voltage direct current at elevated temperatures can result in the accumulation of surface charges in DC gas-insulated transmission line (GIL) insulators. Such a phenomenon leads to localized electric field distortion, increasing the risk of surface discharge. The analysis of interaction behaviors between surface charge and space charge at interfacial domains of GIL insulators is a complex task, which requires a comprehensive understanding of physical mechanisms of the gas–solid interface charging. In this work, a two-dimensional bipolar charge transport and interaction (2D BCTI) model is established, with the consideration of both surface and space charge dynamics. Pulsed electroacoustic tests and surface potential measurements are conducted on DC GIL insulator materials under different electrical-thermal coupling conditions. Experimental results exhibit great consistency with the predictions from the 2D BCTI model. The local accumulation of space charge near interfaces has certain effects on surface potential distribution, which in turn influences charge injection behavior from electrodes. In comparison to traditional surface charge simulation models, the consideration of space charge–surface charge interaction behaviors proves to be essential for estimating the polarity and amplitude of surface potential distribution. This model holds promise for assessing charge characteristics in electrical equipment where direct measurement is challenging.

Funder

Science and Technology Project of State Grid

State Key Laboratory of Electrical Insulation and Power Equipment

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3