Robust technology computer-aided design of gated quantum dots at cryogenic temperature

Author:

Beaudoin Félix1ORCID,Philippopoulos Pericles1,Zhou Chenyi1,Kriekouki Ioanna234ORCID,Pioro-Ladrière Michel2ORCID,Guo Hong15,Galy Philippe3

Affiliation:

1. Nanoacademic Technologies Inc., Suite 802, 666 rue Sherbrooke Ouest, Montréal, Québec H3A 1E7, Canada

2. Institut Quantique, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec J1K 2R1, Canada

3. STMicroelectronics, 850 rue Jean Monnet, 38920 Crolles, France

4. Université Grenoble Alpes, CNRS, Grenoble INP, TIMA, F-38000 Grenoble, France

5. Center for the Physics of Materials and Department of Physics, McGill University, Montréal, Québec H3A 2T8, Canada

Abstract

We present non-linear Poisson and Schrödinger simulations of an industrially fabricated gated quantum dot device at 100 mK using the Quantum-Technology Computer-Aided Design (QTCAD) software [see https://nanoacademic.com/solutions/qtcad/ “QTCAD: A Computer-Aided Design Tool for Quantum-Technology Hardware, Nanoacademic Technologies Inc.” (2022)]. Using automatic adaptive meshing, the 3D conduction band edge profile of an ultra-thin body and buried oxide fully-depleted silicon-on-insulator field-effect transistor is calculated under steady-state and isothermal conditions. This profile is shown to display potential wells consistent with the experimental observation of side-gate-activated corner quantum dots. The electronic structure of these dots is investigated as a function of applied gate bias within the effective mass theory. Crucially, convergence at 100 mK is shown to be a robust feature of QTCAD's non-linear Poisson solver; convergence is consistently achieved without user intervention for 10 out of 10 random gate bias configurations.

Funder

Ministere de l'Economie et de l'Innovation du Quebec

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Reference32 articles.

1. See https://nanoacademic.com/solutions/qtcad/ “ QTCAD: A Computer-Aided Design Tool for Quantum-Technology Hardware, Nanoacademic Technologies Inc.” (2022).

2. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent

3. A CMOS silicon spin qubit

4. A hole spin qubit in a fin field-effect transistor above 4 kelvin

5. Qubits made by advanced semiconductor manufacturing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis and 3D TCAD simulations of single-qubit control in an industrially-compatible FD-SOI device;Solid-State Electronics;2024-05

2. Simulation of Charge Stability Diagrams for Automated Tuning Solutions (SimCATS);IEEE Transactions on Quantum Engineering;2024

3. Single PbS colloidal quantum dot transistors;Nature Communications;2023-11-18

4. Simulation process flow for the implementation of industry-standard FD-SOI quantum dot devices;Solid-State Electronics;2023-11

5. Robust Sub-Kelvin Simulations of Quantum Dot Charge Sensing;2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD);2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3