Comparative investigation of mechanical properties in banana fiber and ramie fiber composites enhanced by SiC nanoparticles

Author:

Sathish T.1ORCID,Giri Jayant2ORCID,Shaik Mohammed Rafi3ORCID,Kumar Ajay4ORCID

Affiliation:

1. Department of Mechanical Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University 1 , Chennai, Tamil Nadu, India

2. Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering 2 , Nagpur, Maharashtra, India

3. Department of Chemistry, College of Science, King Saud University 3 , P.O. Box 2455, Riyadh 11451, Saudi Arabia

4. Department of Mechanical Engineering, School of Engineering and Technology, JECRC University 4 , Jaipur, Rajasthan 303905, India

Abstract

This research explores into analyzing the mechanical characteristics of banana fiber and ramie fiber composites bolstered with silicon carbide (SiC) nanoparticles. The integration of SiC nanoparticles aims to amplify the mechanical robustness and endurance of these natural fiber composites. Through water absorption assessments, we evaluated the composites’ resistance to moisture. In addition, we assessed the mechanical performance via hardness, impact, and three-point bending tests. The results indicate a significant enhancement in the mechanical attributes of both banana and ramie fiber composites due to SiC nanoparticle inclusion. The results reveal a notable enhancement in mechanical characteristics following the incorporation of SiC nanoparticles. Notably, composites containing 8% SiC nanoparticles demonstrated the highest hardness value of 102 HV and the lowest water absorption percentage of 1.5%. In addition, these composites exhibited a superior flexural strength (80 MPa) and modulus of elasticity (4.3 GPa), alongside a maximum impact energy absorption of 18 J. These findings underscore the beneficial influence of SiC nanoparticles on the mechanical properties of the composites, including increased strength, reduced water absorption, enhanced hardness, and improved impact resistance.

Funder

King Saud University

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3