Multivariate trace inequalities, p-fidelity, and universal recovery beyond tracial settings

Author:

Junge Marius1,LaRacuente Nicholas2ORCID

Affiliation:

1. University of Illinois, Champaign, Illinois 61801-2975, USA

2. University of Chicago, Chicago, Illinois 60637, USA

Abstract

Trace inequalities are general techniques with many applications in quantum information theory, often replacing the classical functional calculus in noncommutative settings. The physics of quantum field theory and holography, however, motivates entropy inequalities in type III von Neumann algebras that lack a semifinite trace. The Haagerup and Kosaki L p spaces enable re-expressing trace inequalities in non-tracial von Neumann algebras. In particular, we show this for the generalized Araki–Lieb–Thirring and Golden–Thompson inequalities from the work of Sutter et al. [Commun. Math. Phys. 352(1), 37 (2017)]. Then, using the Haagerup approximation method, we prove a general von Neumann algebra version of universal recovery map corrections to the data processing inequality for relative entropy. We also show subharmonicity of a logarithmic p-fidelity of recovery. Furthermore, we prove that the non-decrease of relative entropy is equivalent to the existence of an L1-isometry implementing the channel on both input states.

Funder

IBM Postdoctoral Trainee Program at Chicago Quantum Exchange

Department of Physics, University of Illinois at Urbana-Champaign

National Science Foundation

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Reference69 articles.

1. Multivariate Trace Inequalities

2. Quantum error correction for quantum memories

3. H. Barnum and E. Knill, “Reversing quantum dynamics with near-optimal quantum and classical fidelity,” arXiv:quant-ph/0004088 (2000).

4. Quantum Information Theory

5. Decoding quantum information via the Petz recovery map

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A noncommutative Freedman inequality;Electronic Communications in Probability;2024-01-01

2. Trace- and Improved Data-Processing Inequalities for von Neumann Algebras;Publications of the Research Institute for Mathematical Sciences;2023-11-09

3. Noncommutative Mulholland Inequalities Associated with Factors and Their Applications;Complex Analysis and Operator Theory;2023-06-09

4. Attainability and Lower Semi-continuity of the Relative Entropy of Entanglement and Variations on the Theme;Annales Henri Poincaré;2023-05-15

5. Monotonic multi-state quantum f-divergences;Journal of Mathematical Physics;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3