Solutions for a flame propagation model in porous media based on Hamiltonian and regular perturbation methods

Author:

Rahman Saeed ur1ORCID,Díaz Palencia José Luis2ORCID

Affiliation:

1. Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 1 , Abbottabad, Pakistan

2. Department of Mathematics and Education, Universidad a Distancia de Madrid 2 , 28400 Madrid, Spain

Abstract

This article extends the exploration of solutions to the issue of flame propagation driven by pressure and temperature in porous media that we introduced in earlier papers. We continue to consider a p-Laplacian type operator as a mathematical formalism to model slow and fast diffusion effects, that can be given in the non-homogeneous propagation of flames. In addition, we introduce a forced convection to model any possible induced flow in the porous media. We depart from previously known models to further substantiate our driving equations. From a mathematical standpoint, our goal is to deepen in the understanding of the general behavior of solutions via analyzing their regularity, boundedness, and uniqueness. We explore stationary solutions through a Hamiltonian approach and employ a regular perturbation method. Subsequently, nonstationary solutions are derived using a singular exponential scaling and, once more, a regular perturbation approach.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3