Approximate bounds and temperature dependence of adiabatic connection integrands for the uniform electron gas

Author:

Harding Brittany P.1,Mauri Zachary1,Pribram-Jones Aurora1ORCID

Affiliation:

1. University of California, Merced, 5200 North Lake Road, Merced, California 95343, USA

Abstract

Thermal density functional theory is commonly used in simulations of warm dense matter, a highly energetic phase characterized by substantial thermal effects and by correlated electrons demanding quantum mechanical treatment. Methods that account for temperature dependence, such as Mermin–Kohn–Sham finite-temperature density functional theory and free energy density functional theory, are now employed with more regularity and available in many standard code packages. However, approximations from zero-temperature density functional theory are still often used in temperature-dependent simulations using thermally weighted electronic densities as an input to exchange–correlation functional approximations, a practice known to miss temperature-dependent effects in the exchange–correlation free energy of these systems. In this work, the temperature-dependent adiabatic connection is demonstrated and analyzed using a well-known parameterization of the uniform electron gas free energy. Useful tools based on this formalism for analyzing and constraining approximations of the exchange–correlation at zero temperature are leveraged for the finite-temperature case. Inspired by the Lieb–Oxford inequality, which provides a lower bound for the ground-state exchange–correlation energy, bounds for the exchange–correlation at finite temperatures are approximated for various degrees of electronic correlation.

Funder

U.S. Department of Energy

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3