Exploring the parameter space of an endohedral atom in a cylindrical cavity

Author:

Panchagnula K.1ORCID,Thom A. J. W.1ORCID

Affiliation:

1. Yusuf Hamied Department of Chemistry, University of Cambridge , Cambridge, United Kingdom

Abstract

Endohedral fullerenes, or endofullerenes, are chemical systems of fullerene cages encapsulating single atoms or small molecules. These species provide an interesting challenge of Potential Energy Surface determination as examples of non-covalently bonded, bound systems. While the majority of studies focus on C60 as the encapsulating cage, introducing some anisotropy by using a different fullerene, e.g., C70 can unveil a double well potential along the unique axis. By approximating the potential as a pairwise Lennard-Jones (LJ) summation over the fixed C cage atoms, the parameter space of the Hamiltonian includes three tunable variables: (M, ɛ, σ) representing the mass of the trapped species, the LJ energy, and length scales respectively. Fixing the mass and allowing the others to vary can imitate the potentials of endohedral species trapped in more elongated fullerenes. We choose to explore the LJ parameter space of an endohedral atom in C70 with ɛ ∈ [20, 150 cm−1], and σ ∈ [2.85, 3.05 Å]. As the barrier height and positions of these wells vary between [1, 264 cm−1] and [0.35, 0.85 Å] respectively, using a 3D direct product basis of 1D harmonic oscillator (HO) wavefunctions centred at the origin where there is a local maximum is unphysical. Instead we propose the use of a non-orthogonal basis set, using 1D HO wavefunctions centred in each minimum and compare this to other choices. The ground state energy of the X@C70 is tracked across the LJ parameter space, along with its corresponding nuclear translational wavefunctions. A classification of the wavefunction characteristics, namely the prolateness and “peanut-likeness” based on its statistical moments is also proposed. Excited states of longer fullerenes are assigned quantum numbers, and the fundamental transitions of Ne@C70 are tracked across the parameter space.

Funder

Walters-Kundert Next Generation Fellowship Fund

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3