Nonlinear model reduction to fractional and mixed-mode spectral submanifolds

Author:

Haller George1ORCID,Kaszás Bálint1ORCID,Liu Aihui1ORCID,Axås Joar1ORCID

Affiliation:

1. Institute for Mechanical Systems, ETH Zürich , Leonhardstrasse 21, 8092 Zürich, Switzerland

Abstract

A primary spectral submanifold (SSM) is the unique smoothest nonlinear continuation of a nonresonant spectral subspace E of a dynamical system linearized at a fixed point. Passing from the full nonlinear dynamics to the flow on an attracting primary SSM provides a mathematically precise reduction of the full system dynamics to a very low-dimensional, smooth model in polynomial form. A limitation of this model reduction approach has been, however, that the spectral subspace yielding the SSM must be spanned by eigenvectors of the same stability type. A further limitation has been that in some problems, the nonlinear behavior of interest may be far away from the smoothest nonlinear continuation of the invariant subspace E. Here, we remove both of these limitations by constructing a significantly extended class of SSMs that also contains invariant manifolds with mixed internal stability types and of lower smoothness class arising from fractional powers in their parametrization. We show on examples how fractional and mixed-mode SSMs extend the power of data-driven SSM reduction to transitions in shear flows, dynamic buckling of beams, and periodically forced nonlinear oscillatory systems. More generally, our results reveal the general function library that should be used beyond integer-powered polynomials in fitting nonlinear reduced-order models to data.

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3