Global well-posedness of three-dimensional incompressible Boussinesq system with temperature-dependent viscosity

Author:

Niu Dongjuan1ORCID,Wang Lu1ORCID

Affiliation:

1. School of Mathematical Sciences, Capital Normal University , Beijing 100048, People’s Republic of China

Abstract

In this paper, we focus on the global well-posedness of solutions to three-dimensional incompressible Boussinesq equations with temperature-dependent viscosity under the smallness assumption of initial velocity fields u0 in the critical space Ḃ3,10. The key ingredients here lie in the decomposition of the velocity fields and the regularity theory of the Stokes system, which are crucial to get rid of the smallness restricition of the initial temperature θ0. In addition, we mention that the improved decay estimates in time is also necessary.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Reference20 articles.

1. Theory of waves and vortices propagating along a horizontal rectanglar channel, communicating to the liquid in the channel generally similar velocities of the bottom surface;J. Math. Pures Appl.,1872

2. The initial value problem for the Boussinesq equations with data in Lp;Lect. Notes Math.,1980

3. Global regularity for the 2D Boussinesq equations with partial viscosity terms;Adv. Math.,2006

4. Global well-posedness of the viscous Boussinesq equations;Discrete Contin. Dyn. Syst. A,2005

5. On the global well-posedness for Boussinesq system;J. Differential Equations,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3