Geometric and doping effects on radiative recombination in thin-film near-field energy converters

Author:

Feng Dudong1ORCID,Yee Shannon K.1ORCID,Zhang Zhuomin M.1ORCID

Affiliation:

1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Abstract

Modeling radiative recombination is crucial to the analysis of radiative energy converters. In this work, a local radiative recombination coefficient is defined and derived based on fluctuational electrodynamics that is applicable to thin-film cells in both the near field and far field. The predicted radiative recombination coefficient of an InAs cell deviates from the van Roosbroeck–Shockley relation when the thickness is less than 10 µm, and the difference exceeds fourfold with a 10 nm film. The local radiative recombination coefficient is orders of magnitude higher when an InAs cell is configured in the near field. The local radiative recombination coefficient reduces as the doping level approaches that of a degenerate semiconductor. The maximum output power and efficiency of a thermoradiative cell would be apparently overpredicted if the electroluminescence coefficient defined in this paper were taken as unity for heavily doped semiconductors.

Funder

Office of Science

National Science Foundation

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3