Real-time generation of circular patterns in electron beam lithography

Author:

Li Zhengjie12,Yin Bohua12,Sun Botong1,Huang Jingyu12,Wang Pengfei1,Han Li12

Affiliation:

1. Institute of Electrical Engineering, Chinese Academy of Sciences 1 , Beijing 100190, China

2. University of Chinese Academy of Sciences 2 , Beijing 100190, China

Abstract

Electron beam lithography (EBL) involves the transfer of a pattern onto the surface of a substrate by first scanning a thin layer of organic film (called resist) on the surface by a tightly focused and precisely controlled electron beam (exposure) and then selectively removing the exposed or nonexposed regions of the resist in a solvent (developing). It is widely used for fabrication of integrated circuits, mask manufacturing, photoelectric device processing, and other fields. The key to drawing circular patterns by EBL is the graphics production and control. In an EBL system, an embedded processor calculates and generates the trajectory coordinates for movement of the electron beam, and outputs the corresponding voltage signal through a digital-to-analog converter (DAC) to control a deflector that changes the position of the electron beam. Through this procedure, it is possible to guarantee the accuracy and real-time control of electron beam scanning deflection. Existing EBL systems mostly use the method of polygonal approximation to expose circles. A circle is divided into several polygons, and the smaller the segmentation, the higher is the precision of the splicing circle. However, owing to the need to generate and scan each polygon separately, an increase in the number of segments will lead to a decrease in the overall lithography speed. In this paper, based on Bresenham’s circle algorithm and exploiting the capabilities of a field-programmable gate array and DAC, an improved real-time circle-producing algorithm is designed for EBL. The algorithm can directly generate circular graphics coordinates such as those for a single circle, solid circle, solid ring, or concentric ring, and is able to effectively realizes deflection and scanning of the electron beam for circular graphics lithography. Compared with the polygonal approximation method, the improved algorithm exhibits improved precision and speed. At the same time, the point generation strategy is optimized to solve the blank pixel and pseudo-pixel problems that arise with Bresenham’s circle algorithm. A complete electron beam deflection system is established to carry out lithography experiments, the results of which show that the error between the exposure results and the preset patterns is at the nanometer level, indicating that the improved algorithm meets the requirements for real-time control and high precision of EBL.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3