Scale-invariant breathing oscillations and transition of the electron energization mechanism in magnetized discharges

Author:

Zheng Bocong1ORCID,Fu Yangyang23ORCID,Wang Keliang4ORCID,Wang Huihui5ORCID,Chen Long6ORCID,Schuelke Thomas37ORCID,Fan Qi Hua78ORCID

Affiliation:

1. School of Physics, Beijing Institute of Technology 1 , Beijing 100081, China

2. Department of Electrical Engineering, Tsinghua University 2 , Beijing 100084, China

3. State Key Laboratory of Power System Operation and Control,Department of Electrical Engineering 3 , Tsinghua University, Beijing 100084, China

4. Fraunhofer USA Center Midwest, Michigan State University 4 , East Lansing, Michigan 48824, USA

5. Department of Chemical Engineering, Tsinghua University 5 , Beijing 100084, China

6. School of Science, Dalian Maritime University 6 , Dalian 116026, China

7. Department of Electrical and Computer Engineering, Michigan State University 7 , East Lansing, Michigan 48824, USA

8. Department of Chemical Engineering and Materials Science, Michigan State University 8 , East Lansing, Michigan 48824, USA

Abstract

Scale-invariant breathing oscillations are observed in similar magnetized discharges at different spatiotemporal scales via fully kinetic particle-in-cell simulations. With an increase in the similarity invariant B/p, i.e., the ratio of magnetic field to pressure, breathing oscillations are triggered, leading to an appreciable time-averaged potential fall outside the sheath. With the onset and development of breathing oscillations, the electron energization mechanism shifts from sheath energization to direct Ohmic heating in the ionization region due to the change in the potential fall inside and outside the cathode sheath. Based on the scale invariance of the Boltzmann equation and its collision term, the characteristics of breathing oscillations and the transition of the electron energization mechanism are confirmed to be scale-invariant under similar discharge conditions.

Funder

National Science Foundation

National Natural Science Foundation of China

Tsinghua University

Natural Science Foundation of Beijing Municipality

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3