Numerical study of particle dispersion in the wake of a static and rotating cylinder at Re = 140 000

Author:

Chekrouba K.1ORCID,Benabed A.1ORCID,Mehel A.1ORCID

Affiliation:

1. ESTACA, ESTACA'Lab–Paris-Saclay , F-78180 Montigny-le-Bretonneux, France

Abstract

In this study, the particle-laden flow in the wake of a static and a rotating cylinder at Reynolds number of 140 000 was investigated using the Reynolds Averaged Navier–Stokes numerical approach. Three turbulence models such as k–ω shear stress transport, Reynolds stress model, and local-correlation transition model (LCTM) were selected to predict the flow topology. Lagrangian approach with one-way coupling was used to track solid spherical particles of different sizes (0.01, 0.1, 2.5, 10, and 50 μm). The study reveals that LCTM is the most accurate to predict the flow topology in both cases. Cylinder's rotation generates different effects on flow structure. It breaks the wake's symmetry and reduces its width, and increases the frequency of vortex shedding and the size of the recirculation zone. Particle transport analysis has revealed that particles' response to the flow depends on their Stokes number and wake flow topology. Particles of 0.01, 0.1, and 2.5 μm distribute in and around vortex cores, while particles of 10 and 50 μm do not penetrate vortex cores. Instead, 10 μm particles accumulate mainly around the periphery of vortices, while 50 μm particles skip the vortex street to the thin shear flow region between vortices to be transported by the mainstream flow. Finally, cylinder rotation reduces the particle spread in the vertical direction and shifts all particle distributions in the cylinder's rotation direction. Analysis of particle dispersion functions showed that cylinder's rotation reduces differences in dispersion extent depending on particle size.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3