Multipoint gas–liquid phase detection method based on a thin-film optical waveguide

Author:

Miyachi Yoshia1,Furuichi Hajime2,Sanada Toshiyuki1ORCID,Mizushima Yuki1ORCID

Affiliation:

1. Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan

2. Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu, Shizuoka 432-8561, Japan

Abstract

Gas–liquid phase detection is an important technique applied in a wide range of industries. In this study, we developed a phase detection method using a film-based optical waveguide. The optical waveguide is a thin and flexible film with multi-light paths that uses multi-microsensors for gas–liquid phase detection. The intensity of the reflected light generated by different refractive indices between gas and liquid aids in distinguishing the phase. Additionally, the sensing principle is identical to that of the typical optical fiber probing technique. In this study, we investigated the detection process considering the impact of a single droplet on waveguide sensors. Furthermore, we analyzed a droplet evaporation phenomenon and a thin-film liquid flow accompanied by a high-speed airflow on the sensors. Based on the obtained results, we determined that the proposed method can effectively measure the simultaneous local multipoint and high temporal resolution phase detection on a smooth surface. Therefore, we believe that our original sensor can diagnose such a dispersed two-phase flow near the wall inside of machines or curved tubes where the high-speed visualization is hard to be applied.

Funder

Chubu Electric Power Company

Publisher

AIP Publishing

Subject

Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3