Affiliation:
1. Shanghai Key Laboratory of Special Artificial Microstructure, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2. School of Microelectronics, Shanghai University, Shanghai 200444, China
Abstract
The magnon, an elementary excitation of an orderly magnetic system, has recently received a great deal of attention due to its excellent spin transmission properties. Many researchers have observed a strong correlation between magnon transport properties and temperature. Although existing theories already include the influence of temperature, they cannot clearly explain many phenomena. In this article, we introduce a new scattering process, inspired by the nature of the magnon itself and based on the Boltzmann method, which clearly impacts the transport properties of the magnon. This new scattering process is named Normal scattering, and makes the transport of the magnon exhibit a fluid-like property, which can be captured by a viscous fluid transport equation. The theoretical predictions are in good agreement with experimental results and the proportion of Normal scattering in the overall scattering changes with temperature, which convincingly explains the temperature dependence of magnon transport.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献