High power DC and ns-pulsed 2 MV accelerator for light ions

Author:

Shornikov A.1,Champagne A. E.23,Walet R. C.1ORCID,Mous D. J. W.1

Affiliation:

1. High Voltage Engineering Europa BV 1 , P.O. Box 99, 3800AB Amersfoort, The Netherlands

2. Department of Physics, The University of North Carolina at Chapel Hill 2 , Chapel Hill, North Carolina 27599, USA

3. Triangle Universities Nuclear Laboratory, Duke University 3 , Durham, North Carolina 27708, USA

Abstract

High Voltage Engineering developed, built, and tested a unique 2 MV single-ended accelerator (SingletronTM) for light ions. The system combines a beam current of up to 2 mA for protons and helium in direct-current mode with nanosecond-pulsing capability. Compared to other chopper-buncher applications with Tandem accelerators, the single-ended accelerator increases the charge per bunch by about a factor of 8. The all-solid-state Singletron 2 MV power supplyTM supports high-current operation and features a large dynamic range of the terminal voltage and good transient performance to support the high-current operation. The terminal accommodates an in-house developed 2.45 GHz electron cyclotron resonance ion source and a chopping-bunching system. The latter features phase-locked loop stabilization and temperature compensation of the excitation voltage and its phase. The chopping bunching system further features the selection of hydrogen, deuterium, and helium as well as a pulse repetition rate, ranging from 125 kHz to 4 MHz, that are fully computer controlled. In the testing phase, the system demonstrated smooth operation for 2 mA proton and helium beams at terminal voltages from 0.5 to 2.0 MV, and somewhat reduced current at a voltage down to 250 kV. In pulsing mode, pulses with a full width at half maximum of 2.0 ns reached a peak current of ∼10 and ∼5.0 mA for protons and helium, respectively. This is equivalent to a pulse charge of about 20 and 10 pC. Applications range from various fields requiring direct current at multi-mA levels and MV light ions, including nuclear astrophysics research, boron neutron capture therapy, and deep implantation for semiconductor applications.

Publisher

AIP Publishing

Subject

Instrumentation

Reference20 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HVE ion sources for medium and high-energy accelerator systems;Journal of Physics: Conference Series;2024-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3