Optical channel aggregation based on modulation format conversion by coherent spectral superposition with electro-optic modulators

Author:

Misra Arijit1ORCID,Preußler Stefan1ORCID,Singh Karanveer1ORCID,Meier Janosch1ORCID,Schneider Thomas1ORCID

Affiliation:

1. THz Photonics Group, Institut für Hochfrequenztechnik, Technische Universität Braunschweig , Schleinitzstraße 22, 38106 Braunschweig, Germany

Abstract

Spectrally efficient modulation formats become essential for optical network scaling as the demand for routed data streams exceeds the present wavelength-division multiplexing systems’ throughput. However, achieving high spectral efficiency at high data rates requires complex and bandwidth-intensive electronics. In this study, we propose an all-optical aggregation scheme that combines multiple low spectral efficiency optical wavelength channels from an optical frequency comb based transmitter into fewer channels with higher spectral efficiency. Our method utilizes coherent spectral superposition and optical vector summation, eliminating the need for optical nonlinearities and relying on linear signal processing with an electro-optic modulator. By adjusting the phase of the radio frequency signal driving the modulator, we can easily achieve the required optical phase tuning for vector addition in the I-Q plane. Through experimental demonstrations, we show that the proposed approach enables the generation of 10 GBd PAM-4 and 10 GBd quadrature phase shift keying (QPSK) signals by aggregating two 10 GBd binary phase shift keying signals. Similarly, we aggregate two 10 GBd QPSK signals into one 10 GBd quadrature amplitude modulation-16 (QAM-16) signal. The experiments employ both conventional and sinc-shaped Nyquist signals. Our in-line, all-optical aggregation concept significantly enhances operational capacity while reducing complexity. It offers a promising solution for realizing flexible integrated optical transmitters for advanced modulation format signals using lower-quality electronics. Additionally, it aligns with the requirements of future dynamically reconfigurable optical networks that leverage spectral traffic aggregation. Given its reliance on linear signal processing with an electro-optic modulator, the integration of the method into any integrated photonic platform is straightforward.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

AIP Publishing

Subject

Computer Networks and Communications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3